
Text Prediction and Classification Using String Matching

Byron Knoll
Department of Computer Science
University of British Columbia

Abstract

This paper introduces a simple dynamic pro-
gramming algorithm for performing text pre-
diction. The algorithm is based on the Knuth-
Morris-Pratt string matching algorithm. It is
well established that there is a close relation-
ship between the tasks of prediction, compres-
sion, and classification. A compression tech-
nique called Prediction by Partial Matching
(PPM) is very similar to the algorithm intro-
duced in this paper. However, most variants of
PPM have a higher space complexity and are
significantly more difficult to implement. The
algorithm is evaluated on a text classification
task and outperforms several existing classifi-
cation techniques.

1 Introduction
This paper introduces a simple dynamic programming al-
gorithm for performing text prediction. The algorithm is
very similar to a compression technique called Prediction
by Partial Matching (PPM) (Cleary and Witten, 1984).
PPM is one of the best lossless text compression tech-
niques, so has been subject to a substantial amount of re-
search. It consistently performs well on data compression
benchmarks. There are a large variety of PPM implemen-
tations. However, the specific variation of PPM discussed
in this paper does not appear to have been previously pub-
lished. The algorithm is based on the Knuth-Morris-Pratt
(KMP) string matching algorithm (Knuth, Morris, and
Pratt, 1977).

The remainder of this paper is organized into five main
sections. Section 2 provides background on the text pre-
diction problem and its relationship to data compression
and classification. Section 3 gives an overview of PPM
and KMP, two algorithms which are closely related to this
work. Section 4 provides a high level description of the

algorithm. Section 5 evaluates the algorithm on predic-
tion and classification tasks. Finally, section 6 discusses
the results and speculates at possible future work. The ap-
pendix provides a Java implementation of the algorithm
introduced in this paper.

2 Background

Text prediction can be considered as a sequential process
over time with an input stream of characters. The task
is to predict the next character given a string represent-
ing the input history. In this paper the first character of
a string represents oldest input and the last character rep-
resents the newest input. For example, given the string
“abababa” a good guess for the next character would be
‘b’ since ‘b’ always follows ‘a’ in the input history. It
is well established that there is a close relationship be-
tween the tasks of prediction, compression, and classi-
fication (Marton, Wu, and Hellerstein, 2005). An algo-
rithm which is good at text prediction will also be good at
text classification and text compression. The task of text
prediction is not necessarily limited to natural language.
For example, an alphabet of two letters can be used for
any binary file, regardless of the type of data it contains.

Text prediction can be used for a variety of applica-
tions. For example, it can be used to minimize the num-
ber of keystrokes required to type a given text (Garay-
Victoria and Abascal, 2006). This can be especially use-
ful for slow input methods such as mobile phone keypads.
In addition, it can help increase the communication rate
for people with disabilities. Another use for text predic-
tion is for denoising data. Character predictions can ac-
tually be more valid than the actual input in certain sce-
narios, such as the case of spelling mistakes. Spelling
mistakes can be considered as “noise” in the data which
can be corrected using a predictive filter. Finally, another
example of a common application for text prediction is
the automated completion of search terms used by sev-
eral search engines.

Classification and compression also have fairly obvi-
ous applications. Considering the three tasks of predic-
tion, classification, and compression together covers a
large range of problems encountered in the fields of ar-
tificial intelligence and machine learning. The relation-
ship between these three tasks is explored in more detail
below.

2.1 Relationship Between Prediction and
Compression

Text prediction algorithms can assign a probability dis-
tribution to characters in an alphabet corresponding to
the probability of each character being next in the in-
put stream. This probability distribution can be combined
with a coding scheme such as arithmetic coding or Huff-
man coding to compress data. In fact, a measurement
called cross entropy can be used to estimate the average
number of bits needed to code the data. For a sequence of
N characters xi, and a probability p(xi) assigned to each
character by the prediction algorithm, the cross entropy
can be defined as:

−
N∑

i=1

1
N

log2p(xi)

This gives the expected number of bits needed to code
the string. Another common metric used to compare text
prediction algorithms is perplexity, which can be defined
as two to the power of cross entropy:

2−
∑N

i=1
1
N log2p(xi)

In 1991, a trigram model was used on a large cor-
pus of one million English words to achieve a perplex-
ity score of 247 per word, corresponding to a cross en-
tropy of 7.95 bits per word or 1.75 bits per letter (Brown,
Della Pietra, Della Pietra, Lai, Mercer, 1992). On this
corpus, ASCII coding has a cross entropy of 8 bits per
character, Huffman coding has 4.46, and the UNIX com-
mand compress has 4.43. On more specialized cor-
pora it is possible to achieve lower perplexity scores than
for more general corpora. Recently, a word perplexity
score of 96.9 was reported on the Associated Press corpus
using a technique called stochastic memoization (Wood,
Archambeau, Gasthaus, James, and Teh, 2009). This is
significantly lower than the perplexity scores reported for
competing approaches.

2.2 Relationship Between Prediction and
Classification

Classification is a task in which items must be catego-
rized into groups based on a training set of previously
labelled items. Any prediction or compression algorithm
can be used for classification. This can be done by first

separating the training data into categories based on their
labels. When unlabelled data needs to be classified into a
category, each training category can be used as a separate
training set for the prediction/classification algorithm. In
the case of prediction, the prediction error for the data
is compared using each category as a training set. The
data can be classified as being in the category which re-
sults in the lowest prediction error. Similarly, in the case
of compression the file size of the data is compared when
compressing it using each training category. The data can
be classified as being in the category which results in the
lowest compressed file size.

Consider a concrete example of binary classification.
Suppose there are a set of documents which have been
labelled as being either funny or unfunny. These train-
ing documents can be separated into the two categories.
Given a new unlabelled document, the goal is to classify it
as either being funny or unfunny. One approach to doing
this is using a text prediction algorithm. The prediction
error of the document can be tested using the funny train-
ing data by first inputting all the funny training data as
a string to the prediction algorithm. The prediction error
of the document can be calculated from the number of
incorrect character predictions made when sequentially
inputting the document’s text. Similarly, the prediction
error of the document using the unfunny training set can
be computed. Finally, the document can be classified as
being in the category which results in the lowest predic-
tion error. Another classification approach is using a data
compression algorithm. First, the file size of the funny
training data compressed alone can be compared to the
file size of the document appended to the funny training
data. Subtracting the two sizes results in the amount of
data needed to code the document (using the funny train-
ing set). Similarly, the amount of data needed to code
the document using the unfunny training set can be com-
puted. The document can be classified as being in the cat-
egory which results in the smallest amount of data needed
to code it.

Given the choice between classification using a text
prediction algorithm and the same algorithm used for
compression, there is a practical advantage to using pre-
diction error instead of compressed file size. Using pre-
diction error avoids the computational overhead involved
when performing compression. This overhead includes
using a coding scheme (such as arithmetic coding) and
writing compressed files to disk, which can be a very slow
operation.

Figure 1 summarizes the directed relationships be-
tween prediction, classification, and compression which
have been discussed in this paper. That is, any predic-
tion algorithm can be used for compression. Additionally,
any prediction or compression algorithm can be used for
classification. An argument might be made for the bidi-

prediction

compression classification

Figure 1: Directed relationships between prediction,
compression, and classification.

rectionality of any of these relationships. However, the
relationships presented in this paper seem to be the most
intuitive.

3 Related Work

3.1 Knuth-Morris-Pratt Algorithm

The naı̈ve approach to matching a string S of length M to
a text T of length N has a time complexity of O(M×N).
This approach involves simply iterating through N posi-
tions of T and for each position checking whether the
next M characters match S. The KMP algorithm de-
creases this time complexity to O(M + N). There are
two phases of the KMP algorithm. The first involves iter-
ating through the M characters of S and building a table
of size M . The second involves iterating through the N
characters of T and finding matches.

An intuitive understanding of the KMP algorithm can
be gained by considering a simple example. Suppose we
are trying to match a string S = “abcabz” to the text T
= “abcabcabz”. Iterating through T , the first five charac-
ters match exactly to S. However, as soon as we reach
the sixth character there is a mismatch between the ‘z’
in S and ‘c’ in T . In the naı̈ve approach this mismatch
would force us to return to the second index of T and try
matching it to the beginning of S. However, the obser-
vation can be made that when we found the mismatch at
position six, we already matched “ab” at positions four
and five. These happen to be the first two characters of S.
This means we can just continue trying to match position
six of T with position three of S.

The purpose of building the table for S is that it acts as
a failure function for when we encounter a mismatched
character. It contains an index in S which allows us to
continue matching the original text T without backtrack-
ing. This table can be constructed in O(M) time. Af-
ter the table is constructed, it takes O(N) time to iterate
through T .

3.2 Prediction by Partial Matching

Although there are many variants of the PPM algorithm,
they all share a common concept. The idea is that a good

way to make a prediction about the next character in a se-
quence is to try to match the sequence to some part of the
input history and make the prediction based on what char-
acter comes next in the history. For example, consider the
string “abczabczabc”. A good guess for the next charac-
ter in the sequence would be ‘z’ since ‘z’ always comes
after ‘c’ in the history. In addition, ‘z’ always comes af-
ter the string “bc”. Furthermore, ‘z’ always comes after
the string “abc”. It should be clear that making longer
matches is preferable since they are less likely to occur
by chance. Under the assumption that patterns exist in
the input stream, longer matches will lead to better pre-
dictions. This is essentially a task of temporal pattern
recognition.

Matching the recent input sequence to the input history
can be represented as a string matching problem. The
task is to find the longest matching string between recent
input and the history string. When the longest match is
found, a prediction can be returned as the character which
occurs immediately after the match in the history string.

This model is actually equivalent to the use of n-grams.
In fact, n-grams are actually (n-1) order Markov models.
The length of the match made between the recent input
sequence and the history string determines the order of
the Markov model. This means that in PPM the order
of the model is adaptively changed based on the length
of matches occurring in the input string. If no matches
of a particular length occur in the string, the order of the
model must be reduced.

Most PPM implementations use a fixed maximum size
for the order of the Markov model. This is done to reduce
the time and space complexity of the algorithm. The ma-
jority of PPM implementations use exponential memory
in relation to the maximum length of the Markov model.
In 1997 a variant of PPM was introduced called PPM*
which uses an unbounded order Markov model (Cleary
and Witten, 1997). The stochastic memoizer mentioned
in section 2.1 also uses an unbounded order Markov
model to achieve record breaking perplexity scores.

4 Algorithm Description
The algorithm introduced in this paper uses an un-
bounded order Markov model. In addition, it uses linear
memory which is an improvement over the exponential
memory needed by most PPM implementations. How-
ever, for predicting each new character of an input stream
it has a time complexity of O(N) where N is the his-
tory size. This means that for a given file of length N ,
the time complexity to predict every byte of that file is
O(N2). The time complexity for most PPM variations
range between O(N) and O(N2). Time complexities be-
low O(N2) can be achieved using suffix tries.

The appendix of this paper has a full Java implementa-
tion of the algorithm. Of particular note is the simplicity

of the algorithm in comparison to other PPM implemen-
tations. If the amount of data to be processed is relatively
small so that the O(N2) time complexity is not a concern,
this algorithm could be preferable to the use of other PPM
implementations. This is due to its linear memory usage,
unbounded Markov order, and simple implementation.

The algorithm relies upon KMP string matching. Con-
sider the input string “zabracadabra”. Reversing the
string results in another string S = “arbadacarbaz”. Now
consider matching S to the text T = “rbadacarbaz” (the
same as S except missing the first character). Running
KMP string matching on S and T will result in a se-
quence of character mismatch events. Each mismatch has
a corresponding match length indicating how much of S
matches T . The mismatches (S:T :length triples) for this
example are a:r:0, a:b:0, r:d:1, r:c:1, and d:z:4. These
mismatches indicate that the longest match in the string
is four. Given the longest match of “abra”, a prediction
of ‘c’ can be made as the next character.

In the Java implementation provided in the appendix,
a map data structure is used to store information about
the longest matches. If there are multiple matches of
the same length, a prediction for the next character can
be made by using the most frequent character prediction
among the matches. The stored matches can also be used
to optimize the speed of future predictions. If a new char-
acter was correctly predicted by one of the matches stored
in the data structure, the longest matches do not need to
be recomputed. This allows a prediction to be returned
in O(1) time. However, if the new character was not pre-
dicted by one of the stored matches, new matches will
need to be recomputed from the entire history in O(N)
time. Therefore, this algorithm will run faster when it is
good at predicting the input data.

5 Evaluation
Since PPM has already been extensively studied for the
task of compression, this paper will focus on evaluating
the algorithm on prediction and classification tasks.

5.1 Prediction
The majority of evaluation on text prediction algorithms
is done by comparing perplexity metrics. Since the al-
gorithm introduced in this paper simply outputs the most
likely character instead of assigning a probability distri-
bution to all the characters, the perplexity metric cannot
be used. It should be noted that it is not necessarily dif-
ficult to assign a probability distribution to the characters
but this was not discussed in this paper to avoid addi-
tional complexity. Instead, the error rate of character pre-
dictions on various data can be reported. The Calgary
corpus is a popular dataset to compare the performance
of compression algorithms. Unfortunately, most publica-
tions about this corpus report perplexity scores and com-

File Size (KiB) Description
bib 111.261 structured text (bibliography)
book1 768.771 text, novel
book2 610.856 formatted text, scientific
geo 102.400 geophysical data
news 377.109 formatted text, script with news
obj1 21.504 executable machine code
obj2 246.814 executable machine code
paper1 53.161 formatted text, scientific
paper2 82.199 formatted text, scientific
pic 513.216 image data (black and white)
progc 39.611 source code
progl 71.646 source code
progp 49.379 source code
trans 93.695 transcript terminal data

Table 1: File size and description of Calgary corpus files.

pressed file sizes instead of error rates for character pre-
diction. However, examining the error rates for files in
the Calgary corpus is still a useful exercise because it al-
lows comparison of error between different types of data.
In addition, the error scores reported in this paper can be
used as a comparison metric for future work.

Table 1 provides a description of the different files con-
tained in the Calgary corpus. Table 2 provides the aver-
age byte prediction error for files in the Calgary corpus.
Comparing byte prediction error instead of binary error or
some other granularity was chosen purely for implemen-
tation convenience. Of course, choosing a smaller granu-
larity such as binary prediction error results in lower er-
ror rates, but should preserve the same relative perfor-
mance between different types of data. The ‘pic’ file
stands out as having an extremely good prediction rate.
This is likely due to the fact that it is not compressed so
has a lot of redundant information in comparison to its
underlying Kolmogorov complexity. It is also interesting
to compare the error rates between similar types of data.
For example, the ‘book1’ novel has a much higher error
rate than the scientific text ‘book2’.

Figure 2 shows how the average prediction error
rate for a novel changes sequentially from the be-
ginning of the text to the end. The novel is in
ASCII format and was obtained from Project Gutenberg
(http://www.gutenberg.org). The prediction error at the
end of the text was 41.066%. The graph indicates that the
rate of change of error decreases over time. One use for
this type of information is that it can help provide an es-
timate of the maximum number of bytes that are needed
for decreasing the error rate. For example, if there is no
significant drop in error rate after 1MiB of input history,
then the history size can be limited to 1MiB to help in-
crease computational performance of the algorithm. By

File Error Percentage
bib 32.768%
book1 47.149%
book2 37.032%
geo 64.346%
news 39.693%
obj1 45.999%
obj2 33.513&
paper1 39.916%
paper2 43.023%
pic 11.289%
progc 37.713%
progl 26.928%
progp 24.066%
trans 20.476%

Table 2: Average byte prediction error on Calgary corpus
files.

0 1 2 3 4 5 6 7 8 9

x 105

0.4

0.45

0.5

0.55

0.6

0.65

byte count

av
er

ag
e

er
ro

r
ra

te

Figure 2: Average error rate over time for each byte of
the novel Twenty Thousand Leagues Under the Sea (Jules
Verne, 1870).

limiting the history size, the computational complexity of
the algorithm is reduced from O(N2) to O(N).

5.2 Classification

The dataset chosen for this classification task is from an
undergraduate machine learning course at the University
of British Columbia. The dataset was used in a class com-
petition to give bonus marks to the students with the low-
est test error. Since a substantial amount of bonus marks
were available to students for performing well in the con-
test, the incentive for students to invest a lot of time/effort
in the competition was significantly increased. The task
was to classify Wikipedia articles as either being part of a
particular category or not part of it. In the training set the
articles were labelled as either positive (part of the cate-
gory) or negative (not part of the category). For exam-

Method Error Percentage
PRED ORIG 12%
PRED LOW 10.5%
PRED STEM 10%
PAQ ORIG 11%
PAQ LOW 16%
PAQ STEM 23.5%

Table 3: Classification error on the test set (200 arti-
cles). Three different training sets were used: original
ASCII text (ORIG), text converted to lowercase charac-
ters (LOW), and text converted to word stems (STEM).

ple, if the category was “hobbies” then all of the positive
training articles belong to the hobbies category and none
of the negative training articles belong to the hobbies cat-
egory. The negative training articles were not necessarily
part of the same category. The actual category was not
given. There were 100 positive training articles, 100 neg-
ative training articles, 100 positive test articles, and 100
negative test articles.

The results from six classification methods are sum-
marized in table 3 and table 4. The technique used to do
the classification was the same as that described in sec-
tion 2.2. PRED refers to the text prediction algorithm
described in section 4 and PAQ refers to the PAQ8L data
compression algorithm. The PAQ data compression al-
gorithm was chosen because it has top rankings on sev-
eral benchmarks measuring compression ratio. Perform-
ing preprocessing on the training set had a significant ef-
fect on the error rates. The two preprocessing steps used
were converting all characters to lowercase (LOW) and
performing word stemming (STEM) on the lowercase let-
ters. Word stemming was done using the Porter algorithm
(Porter, 1980). Examining table 4 indicates that several of
the methods were significantly better at classifying doc-
uments in the POS set than the NEG set. This bias is
especially noticeable for the PAQ STEM method. The
bias does not appear to be present in PAQ ORIG. It is
unclear why the PAQ algorithm performed worse when
the preprocessing steps were performed. In the case of
PRED, it is expected that the preprocessing steps should
decrease the error because they allow longer matches to
be discovered.

Table 5 provides the error percentages of the top six
participants in the class competition. A variety of dif-
ferent classification approaches were used including neu-
ral networks, decision trees, n-gram based methods, and
support vector machines. It should be noted that all of
these techniques ran significantly faster than any of the
PRED or PAQ methods. All six of the methods in ta-
ble 5 ran in the order of a few minutes, while the six
PRED/PAQ methods took several hours to run. Slower

Method Wrong in POS Wrong in NEG
PRED ORIG 7 17
PRED LOW 5 16
PRED STEM 5 15
PAQ ORIG 11 11
PAQ LOW 3 29
PAQ STEM 3 44

Table 4: Number of errors in the positive test set (POS)
and negative test set (NEG). There are 100 articles in each
test set.

Name Error Percentage
Fisher LD Hill Climb & NBayes 9%
NaiveB 12.5%
turtle star 12.5%
Classifoo 12.5%
boosted? perceptron 13%
BetterLateThanNever 13%

Table 5: Top six results from classification competition.
There were a total of 18 entries.

runtime performance is one of the disadvantages to using
compression techniques with a high compression ratio.
When comparing table 3 to table 5 we can see that all
three of the PRED methods beat 17 out of the 18 entries
in the class contest.

6 Discussion and Future Work
The classification results in section 5.2 seem very promis-
ing. Compared to the majority of the entries in the class
competition, the approach used in this paper is very easy
to implement. Coding complexity could conceivably be
an important factor for the development of certain ap-
plications under time pressure. In addition, the lack of
any parameters to tune also decreases the amount of time
needed to deploy the code. However, the high time com-
plexity of the algorithm may make it unsuitable for cer-
tain large datasets.

The performance of several other approaches were
evaluated before choosing to focus on PPM in this paper.
These approaches included linear predictive coding, tem-
poral neural networks, and hierarchical temporal memory
(HTM) (Hawkins and Blakeslee, 2004). For the task of
binary prediction on the Wikipedia dataset used in sec-
tion 5.2, linear predictive coding had an error rate of 32%,
hierarchical temporal memory 26%, and temporal neural
networks 28%. In comparison, the algorithm in this paper
had an error rate of 11%.

Two modifications to the algorithm in this paper were
explored. One modification involved using approxi-
mate string matching instead of exact string matching.
The motivation for this idea was that approximate string

matching allows for longer matches which could poten-
tially decrease the error rate of predictions. A dynamic
programming algorithm was implemented for approxi-
mate string matching using the minimum Levenshtein
distance. This algorithm was significantly more compu-
tationally expensive than the approach used in this pa-
per and appeared to have a significantly higher error rate.
Based on these results, this approach was abandoned.

Another modification to the algorithm explored was
the use of ensemble voting to make predictions. The en-
semble voting was performed between different orders
of Markov models (different match lengths). Longer
matches were given a higher vote and shorter matches
were given a smaller vote. Imagine if there is only one
match of length 50 and 100 matches of length 49. The
matches of length 49 are likely to contain some predic-
tive value, so it makes intuitive sense to give them some
weight. Several weighting functions were experimented
with. Overall, the results of the ensemble voting seem to
be slightly better than the algorithm presented in this pa-
per. However, it was not clear whether this difference was
statistically significant. This is a promising area for future
work. Assigning weights to the different order Markov
models also simplifies the task of creating a probability
distribution over the characters. However, the task of as-
signing good weights is a difficult problem and remains
an active area of research.

One approach to assigning the weights is to base them
upon the empirical prediction accuracy of the different
match lengths. For example, if the longest match cor-
rectly predicts the next character 42% of the time, 0.42
would be a good weight assigned to the character pre-
dicted by the longest match. Since a given match length
can predict multiple characters, if the second most likely
character predicted by the longest match is correct 5%
of the time, a corresponding probability of 0.05 can
be assigned to the second most likely character of the
longest match. Similarly this can be done for lower match
lengths.

Another potential area for future work is limiting the
history size. The results in figure 2 and correspond-
ing discussion in section 5.1 indicate that a limited his-
tory size may not necessarily have a significant impact
on prediction accuracy. One approach to limiting the
history size is to simply use a sliding window and for-
get everything before a certain point in history. How-
ever, this naı̈ve approach can be improved upon. Ideally,
only portions of the history which will never be matched
should be removed. However, it is impossible to deter-
mine whether a particular portion of the history may be
matched at some point in the future. If we keep track of
statistics on how often different characters in the history
string are matched, this might provide some indication of
how likely those characters will be matched in the future.

This statistic will also need to be weighted by how re-
cently the character occurred, since recent sections of the
history have less opportunity to be matched compared to
older sections of the history. This statistic may be used as
a heuristic for determining which sections of the history
can be forgotten.

Certain properties of PPM can be compared to how
the human brain operates. It is clear that the brain
stores memories of the past and that these memories can
be retrieved based on their similarity to recent events.
This is exactly the same principle that PPM operates
on. There is also evidence that the task of prediction
plays a fundamental role in human intelligence and be-
haviour (Hawkins and Blakeslee, 2004). However, there
are clearly differences in the capabilities of the human
brain when compared to PPM.

One remarkable property of the brain is its massive
parallelism in information processing. In contrast, PPM
works on a single sequential character stream. Another
difference is that the brain can perform higher level
functions which require accessing memories in a non-
sequential order. That means that certain predictions may
be a function of several non-contiguous segments of the
input history. For example, consider the task of adding
“46+54”. Although this particular string sequence may
never have occurred in a person’s input history, the indi-
vidual components of numbers and the addition operator
may have been encountered at different points in time. In
order to predict what the answer of this operation is, a
non-sequential function of memory access is required. It
is possible that by stacking PPM predictors on top of each
other, higher level patterns can be recognized. HTM pro-
vides a framework which may help parallelize and stack
individual PPM predictors. In fact, PPM performs a func-
tion very similar to what is required by nodes in HTM.
This would be another interesting area for future research.

References
Brown, P., Della Pietra, S., Della Pietra, V., Lai, J., and

Mercer, R. 1992. An estimate of an upper bound
for the entropy of English. Computational Linguistics,
18(1), pp 31-40.

Cleary, J., and Teahan, W. 1997. Unbounded length con-
texts for PPM. Comput. J. 40, 2/3, pp 6775.

Cleary, J., and Witten, I. 1984. Data compression us-
ing adaptive coding and partial string matching. IEEE
Transactions on Communications, Vol. 32 (4), pp 396-
402.

Garay-Victoria, N., and Abascal, J. 2006. Text prediction
systems: A survey. Univ. Access. Inf. Soc. 4, pp 188-
203.

Hawkins, J., and Blakeslee, S. 2004. On Intelligence.
New York: Holt.

Knuth, D., Morris, J., and Pratt, V. 1977. Fast Pattern
Matching in Strings. In SIAM Journal on Computing,
pp 323-350.

Marton, Y., Wu, N., and Hellerstein, L. 2005. On
compression-based text classification. In Proceedings
of the European Colloquium on IR Research (ECIR),
pp 300-314.

Porter, M. 1980. An algorithm for suffix stripping. Pro-
gram, 14(3) pp 130-137.

Wood, F., Archambeau, C., Gasthaus, J., James, L., and
Teh, Y.W. 2009. A stochastic memoizer for sequence
data. In ICML 09: Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pp 1129-
1136.

7 Appendix: Java Source Code
import java.util.Iterator;
import java.util.LinkedList;
import java.util.TreeMap;

public class Predictor {
private TreeMap<Character, LinkedList<Integer>> tree = new TreeMap<Character, LinkedList<Integer>>();
private int longestMatch = -1;

/**
* @return predicted next character of the string

*/
public char predict(String str) {

if (str.length() == 0)
return ’0’;

if (str.length() == 1) {
longestMatch = 0;
return str.charAt(0);

}
if (tree.containsKey(str.charAt(str.length() - 1))) {

longestMatch++;
LinkedList<Integer> pred = tree.get(str.charAt(str.length() - 1));
tree.clear();
for (int pos : pred) {

char c = str.charAt(pos + 1);
LinkedList<Integer> temp;
if (tree.containsKey(c))

temp = tree.get(c);
else

temp = new LinkedList<Integer>();
temp.add(pos + 1);
tree.put(c, temp);

}
} else {

longestMatch = -1;
int m = 1;
int i = 0;
int[] table = createTable(str);
while (m + i < str.length()) {

if (str.charAt(str.length() - i - 1) == str.charAt(str.length() - (m + i) - 1))
i++;

else {
insertPrediction(str.charAt(str.length() - m), i, str.length() - m);
m = m + i - table[i];
if (table[i] >= 0)

i = table[i];
}

}
if (i > 0)

insertPrediction(str.charAt(str.length() - m), i, str.length() - m);
}
char prediction = ’0’;
int maxCount = 0;
Iterator<Character> it = tree.keySet().iterator();
while (it.hasNext()) {

char key = it.next();
int count = tree.get(key).size();
if (count > maxCount) {

prediction = key;
maxCount = count;

}
}
return prediction;

}

private void insertPrediction(char c, int i, int pos) {
if (i > longestMatch) {

tree.clear();
longestMatch = i;

}
if (i < longestMatch)

return;
LinkedList<Integer> pred = null;
if (tree.containsKey(c))

pred = tree.get(c);
else

pred = new LinkedList<Integer>();
pred.add(pos);
tree.put(c, pred);

}

private int[] createTable(String str) {
int pos = 2;
int cnd = 0;
int[] table = new int[str.length() - 1];
table[0] = -1;
while (pos < str.length() - 1) {

if (str.charAt(str.length() - pos) == str.charAt(str.length() - cnd - 1)) {
table[pos] = cnd + 1;
pos++;
cnd++;

} else if (cnd > 0)
cnd = table[cnd];

else {
table[pos] = 0;
pos++;

}
}
return table;

}
}

